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A B S T R A C T

Background: The acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease seriously affected worldwide
health. It remains an important worldwide concern as the number of patients infected with this virus and the
death rate is increasing rapidly. Early diagnosis is very important to hinder the spread of the coronavirus.
Therefore, this article is intended to facilitate radiologists automatically determine COVID-19 early on X-ray
images. Iterative Neighborhood Component Analysis (INCA) and Iterative ReliefF (IRF) feature selection methods
are applied to increase the accuracy of the performance criteria of trained deep Convolutional Neural Networks
(CNN).
Materials and methods: The COVID-19 dataset consists of a total of 15153 X-ray images for 4961 patient cases. The
work includes thirteen different deep CNN model architectures. Normalized data of lung X-ray image for each
deep CNN mesh model are analyzed to classify disease status in the category of Normal, Viral Pneumonia and
COVID-19. The performance criteria are improved by applying the INCA and IRF feature selection methods to the
trained CNN in order to improve the analysis, forecasting results, make a faster and more accurate decision.
Results: Thirteen different deep CNN experiments and evaluations are successfully performed based on 80-20% of
lung X-ray images for training and testing, respectively. The highest predictive values are seen in the analysis
using INCA feature selection in the VGG16 network. The means of performance criteria obtained using the ac-
curacy, sensitivity, F-score, precision, MCC, dice, Jaccard, and specificity are 99.14%, 97.98%, 99.58%, 98.80%,
97.81%, 98.83%, 97.68%, and 99.56%, respectively. This proposed study is indicated the useful application of
deep CNN models to classify COVID-19 in X-ray images.
1. Introduction

The coronavirus is a virus that causes respiratory system infection and
can be transmitted from person to person. This virus was seen in the
Wuhan region of China in early December 2019 and soon spread to other
countries. The name of the virus has been declared by the World Health
Organization (WHO) as SARS-CoV-2. It also uses the term COVID-19 to
describe the illness caused by the virus. The coronavirus, which has been
mutating and spreading since August 2021, has infected approximately
203,295,170 million people worldwide, according to the official state-
ments of the WHO, and caused approximately 4,303,515 million deaths
[1]. The most common symptoms are fever (39� and above), cough,
weakness, shortness of breath. Clinical features alone cannot define the
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diagnosis of COVID-19 in patients with early onset of symptoms. Among
the nucleic acid-based tests, the Reverse Transcription Polymerase Chain
Reaction (RT-PCR) test was used to confirm COVID-19 positive patients
[2]. RT-PCR sometimes fails to diagnose COVID-19, and as a result, pa-
tients do not receive appropriate treatment in a timely manner. There-
fore, a negative RT-PCR test does not rule out COVID-19 infection [3].
Availability of testing kits poses important problem fruitful detection of
the illness. It is very important the application of deep learning and
artificial intelligence based approaches for the efficient detection of
disease from X-ray images. During the current COVID-19 pandemic,
using such deep learning based approaches in real time, especially for
rapid testing, successful implementation, and detection of disease, could
potentially provide enormous benefits [4–8].
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Table 1
Some studies diagnosing COVID-19 Chest X-ray with CNNs.

Model Accuracy
(%)

Classes Type

Modified ResNet-18 [22] 96.73 COVID-19, Normal,
Pneumonia

CXR

VGG16,ResNet50V2,
DenseNet169 [23]

99.9 Bacterial pneumonia,
COVID-19, Non-COVID-19
Viral

CXR

EMCNet [24] 98.91 COVID-19, Normal CXR
ResNet-34 [25] 98.33 COVID-19, Normal CXR
DeepCoroNet [26] 1.00 COVID-19, Normal,

Pneumonia
CXR

N. Aslan et al. Chemometrics and Intelligent Laboratory Systems 224 (2022) 104539
1.1. Related studies

Early detection of COVID-19 disease is very important. A certain
portion of the patient population affected by this disease, the infection
can cause severe organ failure and death [9]. Although X-ray imaging is
widely used in hospitals in almost most countries, unfortunately there is a
deficiency of specialists to analyze and interpret X-ray images in some
low-resource clinics and developing countries. A number of DL methods
were tried for the analysis of these images. Data mining and data analysis
have identified the potential value of big data in the educational process
as part of popular technologies in the information fields. Some of these
studies will be discussed in this part of the study. In Ref. [10], the authors
used image improving techniques such as histogram equalization. They
also used gamma correction, balance contrast improvement techniques,
image complement, contrast limited adaptive histogram equalization to
research the effect of image improvement techniques on COVID-19
detection. In addition, the proposed U-net model was compared with
the standard U-Net model for lung image. Six pre-trained CNN;
ResNet101, ResNet18, InceptionV3, ResNet50, ChexNet and Dense-
Net201 were analyzed on flat and segmented lung CXR images. Ucar and
Korkmaz [11] developed COVID-19 method named COVIDdiagnosis-Net
based on Deep Bayes-SqueezeNet, deep learning network, for diagnosis
of COVID-19 with the help of Bayes optimization. In Ref. [12], X-ray
images of various resolutions were trained with different ConvXNets
forms designed. A stacking algorithm was used to optimize the estimates.
Also, they integrated a gradient-based discriminant localization to
separate abnormal area of the X-ray images. In the study of Nour et al.
[13], the CNNmodel was used as a deep feature extractor. Also, extracted
deep distinguishing features were used machine learning algorithms with
a Support Vector Machine (SVM), Decision Tree (DT) and k-Nearest
Neighbor (k-NN). Bayesian Optimization Algorithm was used for opti-
mize of machine learning models. Fuzzy tree transform was applied to
each image, and then sample splitting was applied to these images by
Tuncer et al. [14]. They used the multicore native binary pattern for
feature generation and the features were selected by the iterative
neighboring component feature selector method. Then, images were
analyzed using several algorithms such as k-NN, SVM, DT. Ozturk et al.
[15] suggested a model for early find of COVID-19 cases using X-ray
images. The DarkNet model was formed as the classifier YOLO object
detection system model. They worked on automated detection of
COVID-19 based on combined hybrid feature selection and sample pyr-
amid feature extraction [16]. In addition, pyramid feature generation
based on samples with fused dynamic dimensions, feature selection
based on ReliefF and iterative neighbor component analysis was per-
formed. Artificial neural networks (ANN) and Deep neural networks
(DNN) were used to classify the selected most informative features.
Marqueset et al. [17] analyzed of the X-ray images obtained in two
stages. Firstly, binary classification analysis was performed using X-ray
images taken from normal and COVID-19 images. Second, multiclass
results using images from normal, pneumonia and COVID-19 patients
were compared. The proposed EfficientNet was used for dual and mul-
ticlass. A convolutional neural network-based Decomposition, Trans-
mission, and Rendering (DeTraC) model were developed by Abbas et al.
[18]. Class boundaries were analyzed using the class decomposition
mechanism, which helps the model fit with any anomaly in the image
dataset. Karaknis et al. [19] applied synthetic images to rise the restricted
number of lung X-ray images. They used dual classification for normal
cases, COVID-19 and multiclass classification for normal cases, pneu-
monia and COVID-19. Ismael et al. [20] extracted features from CXR
images from a dataset with normal patient and COVID-19 images using a
pre-trained ResNet50 model. In the classification models achieved the
best accuracy using the linear-core SVM. Also, in Ref. [21], Zebin and
Rezvy applied pre-trained EfficientNetB0, ResNet50, VGG16 networks to
determine COVID-19 and concerned infection based on lung X-ray im-
ages. In addition, a productive oppositional structure was trained for the
formation and growth of the COVID-19 class. Researchers have been
2

working hard since the beginning of the pandemic to find automated
COVID-19 detection systems that use DNN. A comparative of recent
studies is shown in Table 1. The data used in this study [22] were ac-
quired from diverse sources and preprocessed. A deep CNN network was
developed to enable detection of COVID-19 cases. When the dataset was
small, data augmentation was used to artificially generate more samples
from the same dataset instead of collecting more data. Similar to our
study, a three-class classification (Normal, Viral Pneumonia and
COVID-19) were used. Two datasets were used in these studies. The
initial dataset include only 180 images cases of COVID-19. 25 cases of
pneumocystis, SARS and Streptococcus were defined as pneumonia. The
second dataset includes 8851 normal and 6012 pneumonia. As noted,
180 positive COVID-19 cases exist. In our study, more data was used than
the data of the study of [22]. ResNet18 network was designed to reduce
model complexity. As a result of the analysis, it was estimated with
96.73% accuracy. The results of the cascade classifiers were proposed in
the study [23], which included the best detections of bacterial pneu-
monia images, viral (non-COVID-19) pneumonia and COVID-19 were
seen for the ResNet50V2, VGG16 and DenseNet169 networks with 99.9%
accuracy. However, despite the classification of four different diseases,
the number of dataset is less than our study. In the study of [23], 306
X-ray images with four classes as 79 images for viral (Non-COVID-19)
pneumonia, 79 normal, 69 positive COVID-19 images, and 79 bacterial
pneumonia cases were used. Saha et al. [24] proposed an automated
detection called EMCNet to determine COVID-19 patients. The extracted
features, machine learning classifiers (SVM, Random Forest, DT, and
AdaBoost) were developed for COVID-19 detection. Proposed EMCNet
dataset contains 4600 images. The data set was divided into three
different sets: the training set with 3220 images at the rate of 70%, the
validation set with 920 images at the rate of 20%, and the test set with
60% images at the rate of 10%. Compared to other DL based systems,
EMCNet outperformed with 98.91% accuracy, 98.89% F1 score and
97.82% recall. An automated method of DL-assisted using X-ray images
for early detection of COVID-19 infection was proposed [25]. The 286
images in the training set contain 143 normal case and 143 COVID-19
images. In the test dataset, there are 60 normal case and 60 COVID-19
images. Classification of eight pre-trained CNN models from COVID-19
and normal cases, such as VGG16, AlexNet, GoogleNet, SqueezeNet,
MobileNet-V2, ResNet34, ResNet50 and InceptionV3 networks, was
studied. The best performance was achieved by ResNet34 network with
98.33% accuracy. Demir [26] used a deep LSTM architecture called
Deep-Coronet to automatically determine COVID-19 cases from X-ray
images. In addition, marker-controlled watershed segmentation and
Sobel gradient processes were implemented to the images to increase the
performance of the proposed model in the preprocessing phase. The
estimation accuracy was calculated as 100% for the reason of using small
dataset as indicated in the paper. In our study, 15153 data are used: 80%
of this data is used for training and 20% for testing. In the study of [26],
there was a total of 1061 data: 20% for testing, 80% of this data was used
for training. 100% accuracy was obtained with the data set which is
smaller than ours.

There are some studies in which CT images, X-ray images, or two



Fig. 1. Workflow of proposed Deep CNN framework for classifying the COVID-
19 status in X-Ray images.
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images together are analyzed to determine the diagnosis of COVID-19
with the help of deep learning methods [6,27–34].

1.2. Our method

In this study, a large-scale method of diagnosing COVID-19 is pre-
sented. This method is consisted of preprocessing, classification using
deep CNN, classification with feature selection INCA and IRF. In the
preprocessing step, the input Chest X-Ray image is converted to RGB
converted Portable Network Graphics (PNG) image with a size of
299x299 and 8 bit depth and resized according to the required input size
of the meshes used for classification. The features produced with the help
of deep CNN are combined, and the distinctive ones are selected using
INCA and IRF. One of the most preferred distance-based feature selection
methods is ReliefF. It is a parametric property selector. 10-fold cross-
validation is used for both feature selections. The features selected by
INCA and IRF are again used as input to deep CNN classifiers.

1.3. Contributions

The main contributions of this study are given below:

� Two different feature selection methods (INCA and IRF) are applied
on the same dataset to increase the efficiency of classification and to
reduce the validation time. It is seen that the use of these feature
selection algorithms gave efficient results.

� With the help of these methods, very high classification accuracies
were calculated for thirteen different CNN. These results are denoted
the overall success of the proposed IRF and INCA method.

� In addition, when the number of features is huge, using feature se-
lection is one of the most important steps for machine learning. To
optimize this step, INCA and IRF feature selectors are used and higher
performance criteria are obtained with this model then the perfor-
mance criteria of unfeatured selection model.

The remainder of this study is organized as follows: In Section 2,
dataset collection and preparation, feature selection and evaluation
metrics are mentioned. Section 3 presents the experimental results and
comparisons. Section 4 presents an extensive discussion with similar
literature studies. Finally, in Section 5, the conclusions and future work
are discussed.

2. Material and method

2.1. Material

RT-PCR testing for the detection of COVID-19 has a very laborious,
long and complex process. Therefore, we selected an evident and publicly
available dataset containing Chest X-ray images to respond the need for a
fast disease diagnosis system. To obtain a private COVID-19 dataset,
three different datasets, the COVID-19 Chest X-ray dataset [35], the Viral
Pneumonia Chest X-ray dataset [36], the Normal Chest X-ray dataset [37]
is merged. The resulting COVID-19 dataset occurs of 15153 Chest X-ray
images for 4961 patient cases. The dataset includes 10192 Normal, 1345
Viral Pneumonia, and 3616 COVID-19 infection cases. In viral pneu-
monia samples, the diseases are caused by bacterial and non-COVID-19
viral effects. The used dataset consists of Portable Network Graphics
(PNG) image files with a size of 299x299. It is transformed to RGB with
8-bit depth. The workflow of the proposed Deep CNN framework to
classify the COVID-19 situation in Chest X-ray images is visually pre-
sented in Fig. 1. First, lung X-ray images are collected and these images
are labeled as three different lung X-ray images (Normal, Viral Pneu-
monia and COVID-19). After the dataset is labeled in three different
classes, the images in the dataset are converted to RGB format. Data are
divided as 80% training, 20% testing. The training dataset is analyzed
separately with the help of thirteen different deep CNN. First, the
3

classification of the extracted features as a result of the analysis is per-
formed. Then, these features are selected and reclassified using INCA and
IRF feature selection algorithms. Fig. 2 illustrates a sample of Chest X-ray
images used for this study. All three datasets are updated regularly
whereby hospitals around the world.

The entire collections of 15153 Chest X-ray images have proper dis-
tributions to train and test the proposed model. The dataset contains
three classes and a randomly selected set of images from class samples is
shown in Fig. 3. This study is carried out by the deep learning network of
MATLAB R2020a with a personal computer with 16 GB RAM and 3.30
GHz processor.

2.2. Method

In this study, a three-class classification of Normal, COVID-19 and
Viral Pneumonia Lung X-ray images are performed using VGG16, VGG19,
Squeezenet, Shufflenet, Resnet101, Resnet50, Resnet18, GoogleNet,
DarkNet53, DarkNet19, AlexNet, DenseNet201, InceptionResnet-V2
deep CNN. Feature vectors generated using thirteen pre-trained net-
works are shown in Table 2 below.

2.2.1. Feature selection
Feature selection is the process of evaluating the features according to

the algorithm used and selecting the best k features from among the n
features in the data set.



Fig. 2. Sample images of Normal (a), Viral Pneumonia (b), and (c) COVID-19 Chest X-rays.

Fig. 3. Training data (a) and test data (b) used in deep learning analysis of the dataset.

Table 2
Generated feature vectors using the thirteen pretrained networks.

Network Layer Length

VGG16 ‘fc80 1000
‘drop70 4096

VGG19 ‘fc80 1000
‘drop70 4096

Squeezenet ‘conv 100 1000
‘drop 90 512

Shufflenet ‘node_2020 1000
‘node_2000 544

Resnet101 ‘fc10000 1000
‘pool50 2048

Resnet50 ‘fc10000 1000
‘avg_pool' 2048

Resnet18 ‘fc10000 1000
‘pool50 512

GoogleNet ‘loss3-classifier' 1000
‘pool5-drop_7x7_s10 1024

DarkNet53 ‘conv 530 1000
‘avg10 1024

DarkNet19 ‘conv 190 1000
‘avg10 1024

AlexNet ‘fc80 1000
‘drop70 4096

DenseNet201 ‘fc10000 1000
‘avg_pool' 1920

InceptionResnet-V2 ‘predictions' 1000
‘avg_pool' 1536
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2.2.1.1. Iterative Neighborhood Component Analysis (INCA). Neighbor-
hood Component Analysis (NCA) is one of the weight based feature se-
lectors used to maximize the prediction accuracy of the most preferred
classification algorithms. Weights are calculated for all feature columns
[38]. First, it assigns a fixed weight to all attribute columns. It usually sets
the value 1. An optimizer such as ADAM, distance-based fitness function,
4

and stochastic gradient descent (SGD) are used to update the weights.
Informative and redundant weights represent larger and smaller weights,
respectively. Also, NCA generates only positive weights [39]. NCA has
two main problems. First, there is no classifier or an optimal feature
vector for a problem. Secondly, since there is no negative weighted
feature, the redundant feature is selected as elimination. The INCA
feature selector is an iterative and increased model of NCA to accomplish
these problems [40]. The primary purpose of the INCA feature selector is
to find the optimum number of features. For this reason, an iterative error
calculation process is used in INCA. A classifier is chosen as the error/loss
value calculator, the feature vector with the minimum error value is
chosen as the optimum feature vector. INCA selects a variant number of
features for variant problems [41]. In this study, we selected the feature
range from 50 to 1000. Firstly, data is normalized. We normalized 3030
sized feature vectors using min-max normalization.

Xð :; iÞN ¼ Xð :; iÞ �minðXð :; iÞÞ
maxðXð :; iÞÞ �minðXð :; iÞÞ i¼f1; 2;…3030g (1)

where X is the final feature vector with a size of 3030. Therefore, the
normalization process must be applied to obtain optimum results. Then,
sorted indices are obtained by applying NCA to the normalized features.
NCA weights are generated by using Eq. (2).

weights¼NCAðX; targetÞ (2)

In order to calculate error value, k-nearest neighborhood (k-NN) is
used. In this work, k-NN with Manhattan distance is used. Weights are
sorted by descending with Eq. (3).

�
sortedweightsendex

�¼ sortðweightsÞ (3)

where endex is sorted indices with a length of 3030 and target is the
actual/real outputs.

Besides, this process has high calculation complexity. To reduce this



Table 3
Evaluation metrics used in the analysis.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(9)

Sensitivity ¼ TP
Positive

(10)

Sensitivity ¼ TN
Negative

(11)

Precision ¼ TP
TPþ FP

(12)

F score ¼ ðð1þ beta2ÞÞ*ðsensitivity*precisionÞÞ
ððbeta2Þ*ðprecisionþ sensitivityÞÞ

(13)

MCC ¼ ðTP*TNÞ � ðFP*FNÞ
ððTPþ FPÞ*ðTPþ FNÞ*ðTN þ FPÞ*ðTN þ FNÞÞ0:5

(14)

po ¼ acc; pe ¼ ðP*ðTPþ FPÞÞ þ ðN*ðFN þ TNÞÞ
ðTPþ TN þ FPþ FNÞ2

(15)

kappa ¼ po� pe
1� pe

;
pe� po
1� po

(16)

Kappa ¼ maxðkappaÞ (17)

Dice ¼ ð2*TPÞ
ð2*ðTPþ FPþ FN Þ

(18)

Jaccard ¼ dice
2� dice

(19)
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complexity, a feature range of 50 to 1000 is defined. The iterative feature
selection process is defined as follows:

f kð:; lÞ¼Xð :; endexðlÞÞk¼f1; 2;…901g (4)

l¼f100; 101;…1000gl ¼ k þ 99 (5)

f k is selected feature vector in the kth iteration, l defines size of the
selected feature vector.

Calculated error values of f k:

errorðnÞ¼ 1NN
�
f k; 10

�
(6)

10-fold cross-validation is used to calculate errors. After this calcu-
lation, the minimum error is calculated.

½minimum; endex� ¼minðerrorÞ (7)

Finally, the best feature (featfinal) is selected by using a calculated
index value.

featfinalðkÞ¼Xð :; endexðkÞÞ; kj¼f1; 2;…endexþ 49g (8)

The generated featfinal is forwarded to classifiers.

2.2.2. Iterative ReliefF (IRF)
Relief is a widely used feature selection algorithm that is feature

precision and finds the weights of the estimator when the output of the
estimator depends on a multiclass variable. By using the relief algorithm,
feature ranking is made for the sample selected from the data set, taking
into account the proximity of other classes in its class and its distance
from other classes. This feature ranking is run with a model with negative
and positive weights, and the feature selection process is completed. The
feature reduction method can be used to increase the classification ability
[42].

ReliefF generates both positive and negative weights and uses the
Manhattan distance to calculate the weights. ReliefF is an enhanced
model of Relief. Euclidean distance is used in the relief based feature
selectionmethod. TheManhattan distance is used to construct the ReliefF
weights [43].

ReliefF automatically selects the most prominent features. Therefore,
the iterative ReliefF method is proposed. A loss calculator should be
chosen for optimum properties. Therefore, a k-NN classification method
is used as the loss value calculator. In this study, both feature selections
are evaluated and an increase in performance criteria is observed as a
result of the analysis.
Table 4
Parameters used in CNN training.

Training Options Parameter

Optimization algorithm ‘sgdm'
Mini Batch Size 64
Max. Epochs 10
Initial Learn Rate 0.0001
Learn Rate Drop Factor 0.6
Learn Rate Drop Period 20
2.3. Evaluation metrics

In order to evaluate the performance of the deep learning model,
different metrics which are accuracy, specificity, sensitivity, precision, F-
score, Kappa, Matthews correlation coefficient, Dice and Jaccard are
applied in this study to measure the correct and/or incorrect classifica-
tion of COVID-19 detected in the tested Chest X-ray images. Used eval-
uation metrics in this study are given in Table 3 below.

where, True Positive, True Negative, False Negative and False Posi-
tive are TP, TN, FN and FP, respectively. Also value of beta is 1.

3. Results

The goal of this study is to predict the COVID-19 viral infection using
various deep CNN. For this purpose, three different datasets are collected.
This dataset contains 3616 COVID-19, 10192 Normal and 1345 Viral
Pneumonia heterogeneous Chest X-ray images. These data are analyzed
in Matlab R2020a program in thirteen different deep CNN (Vgg16,
Vgg19, Squeezenet, Shufflenet, Resnet101, Resnet50, Resnet18, Goo-
gleNet, DarkNet53, DarkNet19, AlexNet, DenseNet201, and
InceptionResnet-V2). Chest X-ray images are preprocessed before making
5

predictions in deep CNN. The dataset is grayscale images. So the images
are replicated three times to create an RGB image and these images are
resized as needed for deep CNN. The data is divided into 80% training
and 20% testing. Before analyzing the training data of deep CNN, some
training parameters are adjusted. The set training options are shown in
Table 4 below.

After adjusting the training options, COVID-19 detection is performed
on thirteen different deep CNN separately. After the training, the
extracted features are analyzed separately in the INCA and IRF feature
selection algorithms and the features are extracted. Again, it is given as
input data to deep CNN. The workflow of the proposed deep CNN
framework to classify the COVID-19 condition in Chest X-ray images is
shown in Fig. 1. The performance criteria of the obtained results are
shown separately in the tables. Thirteen different deep CNN classified
data collected from three different datasets, and the results are given in
Table 5. The CNN with the best accuracy estimate is indicated in bold
black.

The confusion matrix of highest VGG16 and lowest InceptionResnet-
V2 results are shown in Fig. 4 and Fig. 5. Confusion matrix of the VGG16
network with dataset in Fig. 4, the Normal class achieves almost perfect
classification precision, while the Viral Pneumonia class is classified a
sensitivity of 93.31% in 269 test samples, classifying 1 sample as COVID-
19 and 2 samples as Normal. In Normal class, it is the best sensitivity of
99.36% in 2038 test samples, and 4 samples are COVID-19 and 1 sample
is Viral Pneumonia. In the COVID-19 class distribution, 4 samples are
classified as Normal. Also, no instances are seen in the Viral Pneumonia
class.

Table 6 shows the value of the detailed classification results of the
best performing VGG16 for the raw dataset. The results are showed that
MCC, precision, and F_score values of the COVID-19 class have values
such as 98.00%, 98.34%, and 98.48%, respectively. The model with the
raw dataset achieves 97.53%, 98.86%, and 97.74% accuracy values of
MCC, precision, and F_score of Viral Pneumonia class, respectively. It
indicates strong classification performance in Pneumonia and COVID-19,
while usually the Normal class offers the highest accuracy.



Table 5
Classification results of various proposed CNN (%).

Acc Sen Spe Prec F_score MCC Kappa Dice Jaccard Time (s)

Vgg16 98.94 98.21 99.22 98.79 98.50 97.76 97.62 98.32 96.70 142963.49
Vgg19 98.42 91.23 98.70 97.98 97.60 96.52 96.44 97.59 95.29 84494.94
Squeezenet 97.23 95.06 97.83 96.96 95.98 94.06 93.76 95.70 91.75 17438.78
Shufflenet 97.82 96.67 98.41 97.40 97.03 95.52 95.10 96.56 93.35 24732.65
Resnet101 97.99 96.43 98.43 97.63 97.02 95.63 95.47 96.89 93.96 112531.98
Resnet50 97.95 96.75 98.36 97.53 97.14 95.68 95.40 96.71 93.62 69306.76
Resnet18 98.09 97.36 98.71 97.22 97.29 95.95 95.69 96.96 94.10 26521.45
GoogleNet 97.52 97.00 98.45 96.35 96.67 94.96 94.43 96.06 92.42 29262.74
DarkNet53 97.92 96.40 98.45 97.09 96.74 95.33 95.32 96.87 93.93 66582.46
DarkNet19 98.68 97.75 98.99 98.60 98.16 97.24 97.03 97.89 95.86 58771.68
AlexNet 98.35 97.69 98.76 97.90 97.79 96.65 96.29 97.38 94.90 9617.79
DenseNet201 97.76 96.40 98.33 97.16 96.77 95.21 94.95 96.50 93.23 92990.08
InceptionResnet-V2 95.45 94.05 96.67 94.35 94.20 90.97 89.75 92.72 86.43 111230.22

Acc: Accuracy, Sen: Sensitivity, Spe: Specificity, Prec: Precision, MCC: Matthews correlation coefficient.

Fig. 4. Confusion matrix of the VGG16 with the raw dataset.
Fig. 5. Confusion matrix of the InceptionResnet-V2 with the raw dataset.

Table 6
Performance criteria of the trained Vgg16 in diagnosing the Chest X-rays (%).

Sen Spe Prec F_score MCC

COVID-19 98.62 99.48 98.34 98.48 98.00
Normal 99.36 98.29 99.17 99.26 97.75
Viral Pneumonia 96.65 99.89 98.86 97.74 97.53
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The confusion matrix is shown with the raw dataset of
InceptionResnet-V2 network in Fig. 5. Here, the Normal class achieves
almost perfect classification precision, while the COVID-19 class has a
sensitivity of 91.84% in 723 test samples, classifying 58 samples as
Normal and 1 sample Viral Pneumonia. In Normal class, it is the best
sensitivity of 99.36% in 2038 test samples, 44 samples are COVID-19 and
17 samples are Viral Pneumonia. The Viral Pneumonia class distribution
is the best sensitivity of 93.31% in 269 test samples, 4 samples are
COVID-19 and 14 samples are Normal.

In the predictive study, the InceptionResnet-V2 deep CNN belongs to
the lowest performance and test results are interpreted in Table 7. The
prediction values of low COVID-19 are lower than the specificity,
sensitivity, precision, F_score, and MCC performance criteria of the
VGG16 deep learning network, which is the highest prediction perfor-
mance value 1.56%, 7.07%, 5.16%, 6.03%, 7.92%, respectively. The
prediction values of low Normal are lower than the sensitivity, speci-
ficity, precision, F_score, and MCC performance criteria of the VGG16
deep learning network, which is the highest prediction performance
value, by 2.36%, 5.64%, 2.70%, 2.52%, 7.91%, respectively. The pre-
diction values of low Viral Pneumonia are lower than the sensitivity,
specificity, precision, F_score, and MCC performance criteria of the
6

VGG16 deep learning network, which is the highest prediction perfor-
mance value, by 3.45%, 0.54%, 5.61%, 4.53%, 5.00%, respectively. The
predictive values in deep CNN are given in Table 7 range from VGG16
network to the values in InceptionResnet-V2 network.

The predictive results are analyzed using INCA and IRF feature se-
lection to improve the results obtained in the predictive study using raw
data in various deep CNN. As seen in Table 8; the prediction accuracy of
the VGG16 network which has the best prediction value is 99.14% in the
prediction study using INCA feature selection. Specificity and precision
values are showed to improvement 99.56% and 98.80%, respectively. In
the sensitivity value is observed 0.23% decrease. F_score, MCC, kappa,
dice and Jaccard are observed to improve by 99.58%, 97.81%, 98.14%,
98.83% and 97.68%, respectively. The highest predictive accuracy on the



Table 7
Performance of the trained InceptionResnet-V2 in diagnosing the Chest X-rays.

Sen Spe Prec F_score MCC

COVID-19 91.84 97.92 93.26 92.54 90.23
Normal 97.01 92.74 96.49 96.75 90.01
Viral Pneumonia 93.31 99.35 93.31 93.31 92.66
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Resnet18, Resnet50, and Resnet101 deep CNN has been 98.76% on the
Resnet50 network, with a forecast time of approximately 6530.356s.
According to the Resnet50 network value is calculated without feature
selection, after the INCA feature selection is made, an increase of 0.82%
is seen in the accuracy rate. The decrease in the prediction time that INCA
feature selection in the Resnet50 network contributes to improving the
results. Although there is an increase of 0.64% and 0.22% in sensitivity
and Jaccard values, respectively, it is the lowest value compared to other
performance criteria after feature selection. Although the DenseNet201
network an accuracy of 97.93%, improvement is observed in all perfor-
mance criteria. Accuracy, specificity, precision, F_score, MCC, kappa,
dice and Jaccard values are increased by 0.17%, 0.12%, 0.41%, 0.16%,
0.68%, 0.42%, 0.40% and 0.77%, respectively. The sensitivity value is
decreased by 0.08%. GoogleNet, Shufflenet and VGG19 networks are
observed to have 97.83%, 97.91% and 98.60% accuracy rates, respec-
tively. Alexnet network is an accuracy of 98.86%, and it has a predictive
time 9513.523s. Squzeenet network has an accuracy of 97.36%. Dar-
knet19 and Darknet53 networks prediction accuracy is 99.02% and
98.26%, respectively. Darknet19 and Darknet53 networks accuracy rates
increased by 0.34% in both algorithms. Although feature selection is
applied, the InceptionResnet-V2 networks is showed a lower perfor-
mance value of 96.01% compared to other algorithms. In addition, an
increase in accuracy of 0.58% is observed. The lowest kappa and Jaccard
performance criteria are showed 89.27% and 87.35%, respectively. It is
predictive computational value is faster than other algorithms and has a
value of 1005.125s.
Table 8
Performance results of some deep CNN calculated with INCA feature selection (%).

Acc Sen Spe Prec F_s

Vgg16 99.14 97.98 99.56 98.80 99
Vgg19 98.60 91.10 98.88 98.16 97
Squeezenet 97.36 95.86 98.23 97.54 96
Shufflenet 97.91 96.95 98.62 98.56 97
Resnet101 98.12 97.35 99.21 98.16 97
Resnet50 98.76 97.38 98.75 97.98 97
Resnet18 98.54 97.77 99.12 97.86 97
GoogleNet 97.83 96.85 98.75 96.74 96
DarkNet53 98.26 96.25 98.73 97.86 96
DarkNet19 99.02 97.12 99.17 98.85 98
AlexNet 98.86 97.63 98.87 98.23 97
DenseNet201 97.93 96.32 98.45 97.56 96
InceptionResnet-V2 96.01 93.65 97.20 95.20 94

Table 9
Performance results of some deep CNN calculated with IRF feature selection (%).

Acc Sen Spe Prec F_

Vgg16 98.96 97.74 98.85 99.01 98
Vgg19 98.06 91.10 98.76 98.10 97
Squeezenet 97.30 95.72 98.12 97.65 96
Shufflenet 97.89 96.94 98.52 98.46 97
Resnet101 98.08 97.32 99.19 98.12 97
Resnet50 97.95 97.12 98.64 97.70 97
Resnet18 98.30 97.58 99.05 97.14 97
GoogleNet 97.74 96.72 98.65 96.62 96
DarkNet53 98.13 96.17 98.65 97.75 96
DarkNet19 98.15 97.03 99.10 98.75 98
AlexNet 98.23 97.61 98.56 98.12 97
DenseNet201 97.86 96.25 98.36 97.53 96
InceptionResnet-V2 95.60 93.23 97.12 95.12 94
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As seen in Table 9, IRF feature selection; The VGG16 network, which
has the best predictive value, has a predictive result of 98.96% in the
predictive study using IRF feature selection. Specificity and precision
values are showed improvement of 98.85% and 99.01%, respectively.
The sensitivity value is decreased by 0.47%. F_score, MCC, kappa, dice
and Jaccard are improved, with 98.89%, 98.05%, 84.28%, 96.57% and
93.36%, respectively. The highest predictive accuracy on the Resnet18,
Resnet50, and Resnet101 deep CNN is 98.30% on the Resnet18 network,
with a forecast time of approximately 2572.103s. According to the
Resnet18 value is calculated without feature selection, after the IRF
feature selection is made, an increase of 0.21% is seen in the accuracy
rate. This ratio is showed less accuracy than the Resnet50 accuracy es-
timate in INCA feature selection. The reduction of the prediction time of
the Resnet18 network with IRF feature selection shows that the results of
the analysis are improved. In addition, precision, F_score, MCC, kappa,
dice and Jaccard performance metrics are calculated as 97.14%, 97.72%,
96.12%, 95.86%, 97.08% and 94.32%, respectively. We attained speci-
ficity value of 99.19% in the Resnet50 network. However, it has the
highest predictive value of 11121.235s in the Resnet group. Although the
DenseNet201 network has an accuracy of 97.86%, improvement is
observed in all performance criteria. Accuracy, specificity, precision,
F_score, MCC, kappa, dice and Jaccard values are increased by 0.10%,
0.03%, 0.37%, 0.12%, 0.53%, 0.35%, 0.25% and 0.50%, respectively.
The sensitivity value is decreased by 0.005%. GoogleNet, Shufflenet, and
VGG19 networks have an accuracy of 97.74%, 97.89%, and 98.06%,
respectively. Alexnet network has an accuracy of 98.23%, and it is a
predictive time 9514.632s. Squzeenet network has an accuracy of
97.30%. Darknet19 and Darknet53 networks prediction accuracy is
98.15% and 98.13%, respectively. Although feature selection is applied,
the InceptionResnet-V2 network is showed a lower performance value of
95.60% compared to other algorithms. In addition, an increase in accu-
racy of 0.15% is observed. The lowest kappa and Jaccard performance
criteria show 89.14% and 87.17%, respectively. It is predictive
core MCC Kappa Dice Jaccard Time (s)

.58 97.8 98.1 98.83 97.6 12876.553

.75 97.21 96.85 98.32 96.69 7652.820

.12 94.58 94.23 95.75 93.47 1753.614

.40 95.93 95.85 96.72 93.64 2373.245

.23 96.21 95.82 96.95 94.08 11127.821

.56 95.79 95.96 96.82 93.83 6530.356

.75 96.15 95.96 97.12 94.40 2586.315

.81 95.18 94.73 96.58 93.38 2815.256

.95 95.73 95.82 97.10 94.36 6585.325

.56 97.87 97.25 98.23 96.52 5625.452

.86 96.95 96.72 97.75 95.59 9513.523

.93 95.87 95.36 96.89 93.96 9159.015

.57 91.25 89.27 93.25 87.35 1005.125

score MCC Kappa Dice Jaccard Time (s)

.89 98.05 84.28 96.57 93.36 12885.12

.23 97.03 96.17 98.29 96.63 7663.270

.08 94.50 94.13 95.65 91.66 1745.853

.36 95.82 95.71 96.68 93.57 2371.265

.13 96.18 95.75 96.86 93.91 11121.23

.48 95.68 95.91 96.78 93.76 6528.20

.72 96.12 95.86 97.08 94.32 2572.10

.79 95.11 94.65 96.42 93.08 2802.10

.90 95.69 95.78 97.06 94.28 6542.12

.50 97.85 97.05 98.17 96.40 5623.25

.80 96.92 96.68 97.71 95.52 9514.63

.89 95.72 95.29 96.75 93.70 9160.00

.48 91.14 89.14 93.15 87.17 1014.85



Fig. 6. Violin plots of the VGG16 network using accuracy, sensitivity, specificity, precision, F-score, MCC, kappa, dice, Jaccard, with suggested median values and
mean against Un-feature selection, INCA and IRF segmentation methods.
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computational value which is faster than other algorithms and has a
value of 1014.857s.

We selected a violin chart to present comparisons and display each
quantitative metric in a single way by calculating the proposed seg-
mentation quality measurement tools with the un-feature selection,
INCA, and IRF methods over the Chest X-ray dataset. Violin charts show
the probability of distribution of data at different values. The asymmet-
rical outer shape represents all possible outcomes. Also, as shown in
Fig. 6, the middle (þ) toolbar shows the median value, and the green box
shows the mean value of the data. Red, blue, and purple indicate seg-
mentation results of un-feature selection, INCA and IRF, respectively. The
comparison of the VGG16 network, which gave the best results from all
analyzed deep CNN, with nine segmentation quality metrics is made. In
Fig. 6, each of the nine separate graphs corresponds to three different
distributions. Interestingly, the means between the three distributions
and the intervals between the mean are different. Also, the distribution
patterns are different. Accuracy (Fig. 6a), sensitivity (Fig. 6b), specificity
(Fig. 6c), precision (Fig. 6d), F-score (Fig. 6e), MCC (Fig. 6f), kappa
(Fig. 6g), dice (Fig. 6h) and Jaccard (Fig. 6ı) indicate a better segmen-
tation performance. It is clear that the statistics of the accuracy, speci-
ficity, MCC, precision, and kappa metrics provided by INCA
segmentation are greater than the un-feature selection and IRF methods.
In addition, it is clear that the statistics of Dice, Jaccard, and sensitivity
metrics provided by un-feature selection segmentation are larger than
INCA and IRF methods.

Prediction accuracy and performance criteria are calculated without
any feature selection in the raw data in various deep CNN. Then the INCA
Fig. 7. Chart of non-feature selection (a), INCA feature selectio
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and IRF feature selections are applied separately, and the graphs of the
algorithm with the best results and the algorithm training losses with the
worst results are shown in Fig. 7. Fig. 7a shows the training loss in the
calculation without any feature selection. This graph shows that the
training loss of InceptionResnet-V2 network with low predictive accu-
racy is higher than VGG16 network with high training accuracy. After
applying feature selection to the data, the highest estimation accuracy is
observed in the VGG16 network, the lowest in the InceptionResnet-V2
network, the INCA and IRF feature selection training loss result graphs
are shown in Fig. 7b and c.

4. Discussions

In this section, we compared between the pre-trained deep CNN
proposed to detect COVID-19 and the models proposed in binary and
multi-classification. Table 10 shows the highest data obtained in the
studies mentioned. Seven different deep CNN and modified U-net
network algorithms were used in the article [10], which consists of
almost the same dataset in our study. In total, 18479 Chest X-ray images
were used, and 3616 of these images are the same COVID-19 data. As a
result of the analysis, sensitivity of 97.2%, accuracy of 96.29%, F1-score
96.28%. Modified U-net network, the accuracy of 98.63%, dice 96.94%
predictive values were observed. Our proposed study is calculated the
highest accuracy value as 98.94%, sensitivity 98.21%, and F1-score
98.50% in the VGG16 network without any feature selection. It is
observed that VGG16 network performance criteria performed better
after INCA and IRF feature selection.When comparedwith this study, it is
n (b) and IRF feature selection (c) deep CNN training loss.



Table 10
Comparison of the lung Chest X-ray models for multiclass classification.

Ref. Method Dataset Performance (%)

Covid Total Acc Sen Spe Prec F1_ score Dice MCC Kappa Jaccard

[10] Seven different CNN networks 3616 18479 96.29 97.2 – 96.28
Unet network 3616 18479 98.63 96.94

[44] Inception-V3, Xception,
ResNet

490 6432 96.00 92.00

[11] Bayes-SqueezeNet 76 5949 98.3 98.3 97.4
[45] ResNet101 1765 5982 71.9 77.3 71.8 – – – – – –

[25] ResNet34 203 406 98.3 1 96.67 96.7 98.36 – – – –

[46] VGG19 224 1427 93.48 92.85 98.75
[46] MobileNet v2 224 1427 92.85 99.10 97.09
Our study Thirteen different CNN networks 3616 15153 99.14 97.98 99.56 98.8 99.58 98.83 97.8 98.1 97.6
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seen that the INCA and IRF feature selection methods in our proposed
study are improvement on performance criteria. In another study [44],
COVID-19 diagnosis was studied in Inception-V3, Xception, and ResNet
networks. In addition, 6432 Chest X-ray images were used in the study
and 490 of these images were COVID-19 datasets. Compared to our study,
less data was used as dataset. The highest values obtained are as seen in
Table 10. Uçar and Korkmaz [11] performed a comprehensive analysis
on a new Bayes-SqueezeNet network using a total of 5949 Chest X-ray
images, 76 of which were COVID-19 data. As a result of the analysis,
accuracy, F1_score and MCC performance criteria values were found
98.3%, 98.3% and 97.4%, respectively. In the study using the ResNet101
network [45], 5982 Chest X-ray images were used and 1765 of these
images were COVID-19 data. The highest performance criteria were
specificity, sensitivity and accuracy of 71.8%, 77.3% and 71.9%,
respectively. In our proposed study; sensitivity, specificity and accuracy
values of 15153 datasets analyzed without feature selection with the
ResNet101 network is calculated as 96.43%, 98.43% and 97.99%,
respectively. In addition, after the feature selection is applied in our
proposed study, the performance criteria of the ResNet101 network are
improved. In the study conducted using the ResNet34 network [25], the
prediction accuracy value was calculated as 98.3%. 406 Chest X-ray
images was analyzed, although the sensitivity value was better than the
proposed study. In Ref. [46], COVID-19 detection of VGG19 and
MobileNet-V2 networks were compared. In the analysis using the VGG19
network, the performance criteria of accuracy, recall and specificity were
observed as 93.48%, 92.85% and 98.75%, respectively.

5. Conclusion

This study presents a deep CNN approach for the automatic detection
of COVID-19 pneumonia. The dataset is consisted of a total of 15153
Chest X-ray images. Thirteen different popular and previously reported
effective deep CNN are trained and tested to classify normal, COVID-19
and viral pneumonia patients using Chest X-ray images. The features
obtained from these deep CNN are given as input data to the INCA and
IRF feature selection algorithms. The features obtained after the analysis
of thirteen different deep CNN with INCA and IRF feature selection
methods were given to the deep CNN as input data again. The specified
performance criteria are calculated. Although the VGG16 network shows
the best performance criterion with a value of 98.94%, the worst per-
formance criterion is InceptionResnet-V2 network with a value of
95.45%. First of all, the features extracted from the analysis are classified.
Then, these features are reclassified using INCA and IRF feature selection
algorithms. Deep CNN with the best and worst results hasn't changed
after INCA feature selection. After the INCA feature selection, the accu-
racy value of the VGG16 network is increased to 99.14%. The accuracy of
the InceptionResnet-V2 network is increased by 96.01%. Deep CNN with
the best and worst results hasn't changed after IRF feature selection. After
the INCA feature selection, the accuracy value of the VGG16 network is
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increased to 98.96%. The accuracy value of the InceptionResnet-V2
network is increased by 95.60%. Accuracy, specificity, sensitivity, pre-
cision, F-score, MCC, kappa, dice, Jaccard, with suggested median values
and mean against Un-feature selection, using INCA and IRF segmentation
methods are presented violin plots. However, training losses are
observed during Un-feature selection, INCA and IRF segmentation. When
the data are analyzed without feature selection, the highest accuracy
result is 98.94% in VGG16 network. Sensitivity, specificity, precision,
F_score and Dice values are 98.21%, 99.22%, 98.79%, 98.50% and
98.32% respectively. MCC, Kappa and Jaccard performance criteria
values are 97.76%, 97.62% and 96.70%, respectively. In the analysis
made with the INCA feature selection method, the VGG16 network is the
best accuracy of 99.14% performance criteria. Specificity, precision,
F_score, Kappa and Dice values are 99.56%, 98.80%, 99.56%, 98.14%
and 98.83% respectively. Sensitivity, MCC, Jaccard performance criteria
values are 97.98%, 97.81% and 97.68%, respectively. In the analysis
made with the IRF feature selection method, the VGG16 network has the
best accuracy of 98.96% performance criteria. Specificity, precision,
F_score and MCC performance criteria values are 98.85%, 99.01%,
98.89% and 98.05%, respectively. Sensitivity, Kappa, Dice, Jaccard
performance criteria values are 97.74%, 84.28%, 96.57% and 93.36%,
respectively.

In future, we intend to refine our techniques and suggest new tech-
niques as more real data become available. In addition, different feature
selection or feature extraction methods can be developed and tested on a
dataset with different features.
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